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SCIENTIFIC CAMPUS,

* 110 hectares
« 25 000 users
* 140 Buildings

WATER NETWORK

15 km, highly meshed

usages : research, teaching,
residence, restaurant, green
space,...

Yearly Consumption : 250 000
m3

50 - years old




Campus
challenges

Old water network (60 years old) with severe leakage and
some concern about water quality

Development of an academic activity in the field smart
cities based on living-Lab (PhD and master degree
programs)




Al Applications

* Leak Detection and Geo-localization

Multi-
parameter/multi-
spots Analysis

* Bio-Contamination
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Signature-
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Case Study en m m o

e Lack of bio-contamination data

c . Water quality
Numerlc_:al panc Database | Parameters
Analysis * Epanet - MSX (Chlorine, TOC
\ A etc.)




[ Monitoririg Stations ]

[Lille Demo-Site]
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S::can SENSITIVITY with different
E. coli injections

[Amani Abdallah, PhD Thesis, 2015]
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ﬂ Bio-Anomaly Detection ﬂ
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[ Numerical Analysis Models}]

* Hydraulic Testing Contaminants
- N o
| EPANET ) - transportation with

w * Quality Analysis conservative assumption
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[ Numerical Analysis Results]

[Silvia Tinelli, PhD Thesis, 2017]

Chlorine decay with a 10° CFU/L injection of
E.coli:

Numerical simulations for chlorine conc.
along with time

[Epanet-MSX, Tinelli and Juran, in press]
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[ E. Coli and Chlorine trends after E. coli injection ﬂ

E. coli injection
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Numerical Bio-anomaly Simulation of Chlorscans Data ﬂ
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Normalization of data to the average (F) with a Contamination
Likelihood Assessment




[ Risk indicator for Chlorscan Data in Lille Demo-Site]

07 - ) High
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Risk Scale
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Time Series
Statistical Data Analysis - 1%t 2"4 and 3" standard deviations

Operators input - threshold levels based on their experience




Al-based Algorithm

Tested Pattern recognizers: Supported Vector Machines (SVMs) and
Artificial Neural Network (ANN)

SVMs SVM ALGORITHMs
Support Vectors .,_ o® The Optimal hyperplane is
R - ______ g used for the classification of

upcoming data, after being
trained from two data

Classification:

categories
(AF_AT) . Margin
* Likelihood — 7
* Severity
* RISk MNeural Network
Hidden Layer Output Layer
ANN

The Artificial Neural can classify vectors arbitrarily in n-
dimensionale space, given enough neurons in its structure




ﬂ Multi-parameters/Multi-injections Analysisﬂ

[SWAEU Research report 2017]
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[Montiel, F., Nguyen, B., Juran, |. ..
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[[ Data Presentation - Raw Data Lille University
[Farah, E. (2016)]

— Distributed (Reservoir 13 GM)
— Consumed
— Residual

S000
Time Senes (2015 Values Per Hour )

Raw Consumption Data (AMR) - Distributed (13 General Meters - 338,256.1)
V Demand (80 AMRs - 212320 m3.) =
Lille University Consumption (93AMR) in 2015 (EDIT)



Typical MNF Time Series for DATA ANALYSIS: Relevant indicators of potential
Leak Detection
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- Likelihood matrix: function of amplitude (AF)
and elapsed time period (AT) of the detected
anomaly

[ Risk Assessment Analysis] ]

- Risk severity matrix: function of amplitude
increase rate (AS) and AF

- Risk matrix: combination of the likelihood
scale and the severity scale




NETLEAK Prototype System — and the support software
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for uploaded datasets;

» Alarm panel with the detected
anomalies



SOME RESULTS

DETECTION OF WATER LEAKAGE

Water Balance (m?)

@ GENERAL METERS
® SUB-METERS
FIPES
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Al-based Algorithm

Tested Pattern recognizers: Supported Vector Machines (SVMs) and
Artificial Neural Network (ANN)

SVMs SVM ALGORITHMs
Support Vectors .,_ o® The Optimal hyperplane is
R - ______ g used for the classification of

upcoming data, after being
trained from two data

Classification:

categories
(AF_AS_AT) . Margin
* Likelihood — 7
* Severity
* RISk MNeural Network
Hidden Layer Output Layer
ANN

The Artificial Neural can classify vectors arbitrarily in n-
dimensionale space, given enough neurons in its structure




[ Mono-parameter Analysis ]

[SWAEU Research report 2017]
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ﬂ Multi-parameter Analysis ﬂ

[SWAEU Research report 2017]

Multi-parameter Input:
®* Node: Demand - Pressure

*Pipe: Flow - Velocity - Head
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VI.

VII

ﬂ Conclusions ]

Epanet-MSX is an essential support for bio-contamination scenario simulations

Model validation through comparison with laboratory model test results

. Results demo-illustrate the Role of chlorine in the fate and transportation of

the organic matter (E. coli)

. Color-based risk assessment statistical data analysis model for early bio-

contamination and leak detection

Demo-illustration of the Prototype Systems for early warning systems with
likelihood & risk indicators

Feasibility demo-illustration of Al-based models with mono/multi-parameters
pattern recognition features for reliable bio-contamination & leak detection
filtering false alarms

. Multi-parameters analysis improves leak detection geo-localization reliability
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