

W-SMART 2017 International Workshop

SUNRISE: Large Scale demonstrator of Smart Water

Early Detection of Leaks & Bio-Contaminations in Water Distribution Systems Lille University Campus Professor Isam Shahrour & Professor Ilan Juran & Silvia Tinelli

> W-SMART 2017 International Workshop, November 3°-4°, 2017 Amsterdam

SCIENTIFIC CAMPUS, LILLE

- 110 hectares
- 25 000 users
- 140 Buildings

WATER NETWORK

- 15 km, highly meshed
- usages : research, teaching, residence, restaurant, green space,...
- Yearly Consumption : 250 000 m3
- 50 years old

Campus challenges

Old water network (60 years old) with severe leakage and some concern about water quality Development of an academic activity in the field smart cities based on living-Lab (PhD and master degree programs)

AI Applications

S::can SENSITIVITY with different E. coli injections

[Amani Abdallah, PhD Thesis, 2015]

Bio-Anomaly Detection

Numerical Analysis Models

Numerical Analysis Results

[Silvia Tinelli, PhD Thesis, 2017]

E. Coli and Chlorine trends after E. coli injection

EC -X Cl

0,2

Numerical Bio-anomaly Simulation of Chlorscans Data

Time series [min]

Normalization of data to the average (F) with a Contamination Likelihood Assessment

Risk indicator for Chlorscan Data in Lille Demo-Site

Time Series

Statistical Data Analysis - 1st 2nd and 3rd standard deviations **Operators input** - threshold levels based on their experience

Al-based Algorithm

Tested Pattern recognizers: Supported Vector Machines (SVMs) and Artificial Neural Network (ANN)

Multi-parameters/Multi-injections Analysis

[SW4EU Research report 2017]

SVM – Classification Loss $\approx 0\%$ ANN – Classification Error = 5.26*10⁻⁷

Anomalies	
1 Insignificant	
2 Low	
3 Moderate	
4 High	
5 Very High	

Raw Consumption Data (AMR) – Distributed (13 General Meters – 338,256.1) V Demand (80 AMRs – 212320 m3.) =

Lille University Consumption (93AMR) in 2015 (EDIT)

Typical MNF Time Series for DATA ANALYSIS: Relevant indicators of potential Leak Detection

<u>Normalization of MNF data to</u> <u>the average (F) & Deviations</u> <u>from the threshold in a Leak</u> <u>Likelihood Assessment</u>

Risk Assessment Analysis

- Likelihood matrix: function of amplitude (ΔF) and elapsed time period (ΔT) of the detected anomaly

- **Risk severity matrix**: function of amplitude increase rate (Δ S) and Δ F
- **Risk matrix**: combination of the likelihood scale and the severity scale

NETLEAK Prototype System – and the support software

SOME RESULTS

DETECTION OF WATER LEAKAGE

Al-based Algorithm

Tested Pattern recognizers: Supported Vector Machines (SVMs) and Artificial Neural Network (ANN)

Mono-parameter Analysis

[SW4EU Research report 2017]

Conclusions

- I. Epanet-MSX is an essential support for bio-contamination scenario simulations
- II. Model validation through comparison with laboratory model test results
- III. Results demo-illustrate the Role of chlorine in the fate and transportation of the organic matter (E. coli)
- IV. Color-based risk assessment statistical data analysis model for early biocontamination and leak detection
- V. Demo-illustration of the Prototype Systems for early warning systems with likelihood & risk indicators
- VI. Feasibility demo-illustration of AI-based models with mono/multi-parameters pattern recognition features for reliable bio-contamination & leak detection filtering false alarms
- VII. Multi-parameters analysis improves leak detection geo-localization reliability

AKNOWLEDGEMENTS

The Authors acknowledge and thank SW4EU Consortium Partners, and the demo-site Partners including CALM Water, CEA, and W-SMART for access to data, technical discussions, and shared experience of water utility operators.

Thank you!

W-SMART 2017 International Workshop, November 3°-4°, 2017 Amsterdam