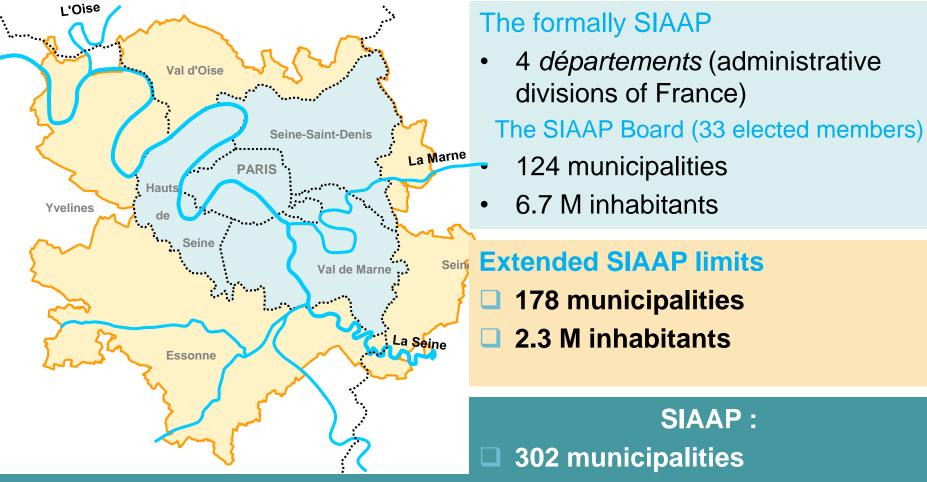


Towards smart integrated management of the Greater Paris sanitation system

Metropolitan Climate C.A.R.E. Management Challenges
W-SMART – LIEGE Belgium, nov 5-6, 2019
Olivier ROUSSELOT - Director Laboratories and Environment, SIAAP

Greater Paris Sanitation Authority www.siaap.fr

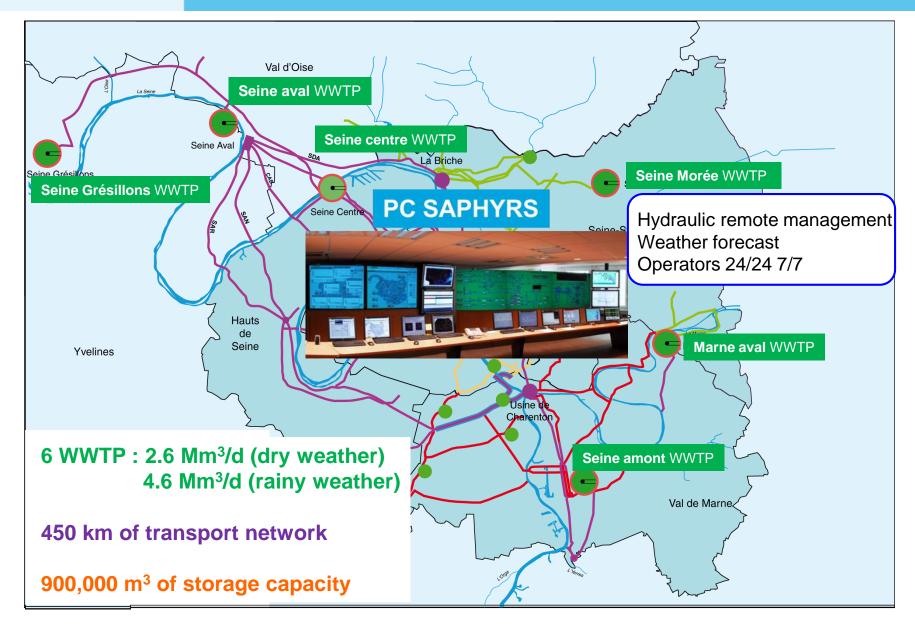


Smart integrated management of the Greater Paris sanitation system

- 1. SIAAP presentation
- 2. An integrated approach
- 3. I-WWTP-COM project

SIAAP presentation

- 1820 km²
- 2 500 000 m³/d
- Mainly a combined sewer system
- Outer suburb : separate system


400 industrial companies

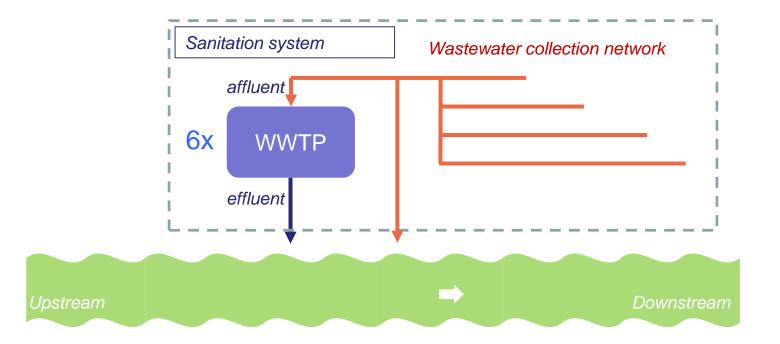
9 M connected inhabitants

15 000 km of municipal sewers

A global sanitation system

A need for artificial intelligence

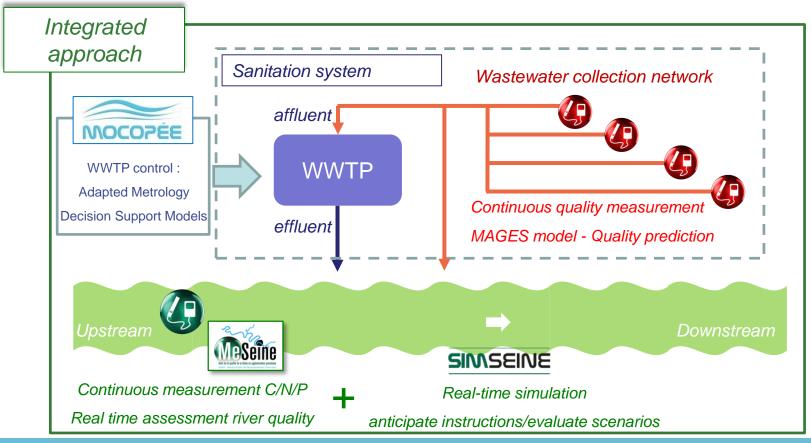
- A vast, complex, reactive sanitation system (mainly combined);
- Many industrial tools for the wastewater treatment, modern, efficient, but demanding to operate ;
- > An evolution of the EU regulatory context :
 - From performance of WWTP to environmental quality objectives
- Energy transition / operating costs / carbon footprint
- Anticipate the effects of climate change
 - Lower water flows, more intense rainfall


Need to develop smart integrated management of the sanitation system

An integrated approach

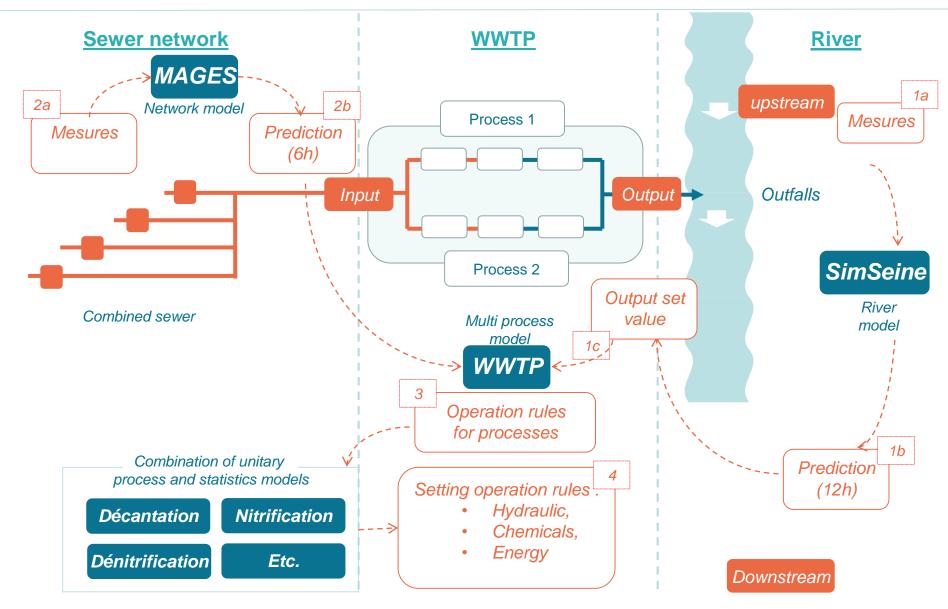
<u>Main objective</u>: Definition of instructions for the operation of the sanitation system, in real time, according to observed and predicted quality of Seine river,

<u>Taking into account</u>: WW routing (flow and quality) / weather forecasts / 6 WWTP performances and status / RIVER objectives / financial optimization (operating costs)

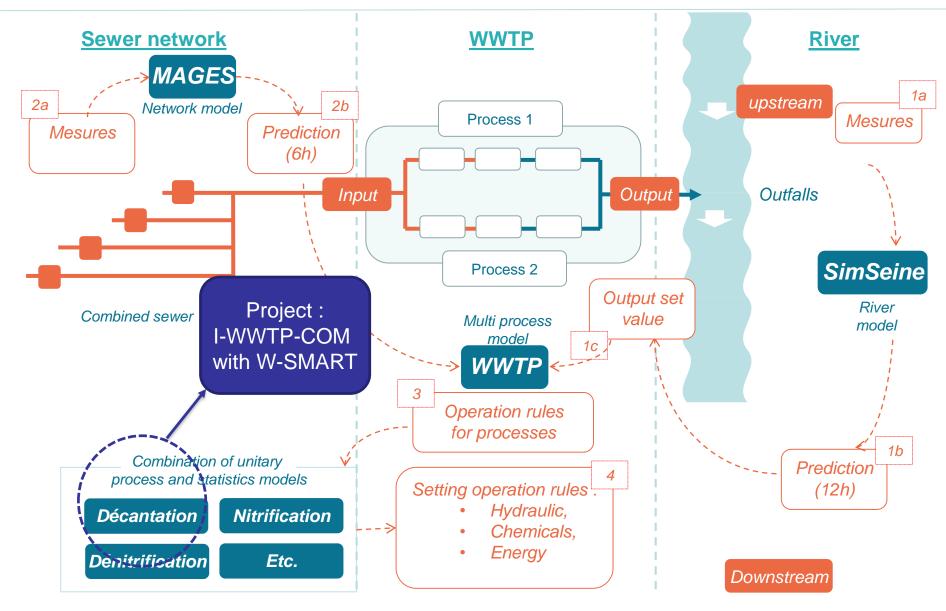


An integrated approach

<u>Main objective</u>: Definition of instructions for the operation of the sanitation system, in real time, according to observed and predicted quality of Seine river,

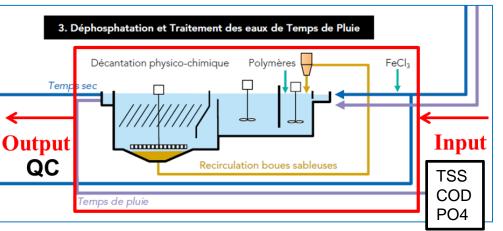

Taking into account: WW routing (flow and quality) / weather forecasts / 6 WWTP performance and

status / RIVER objectives / financial optimization (operating costs)



Smart Integrated Management : the bricks of the project

Smart Integrated Management : bricks of the project


I-WWTP-COM with W-SMART (1/4)

I-WWTP-COM

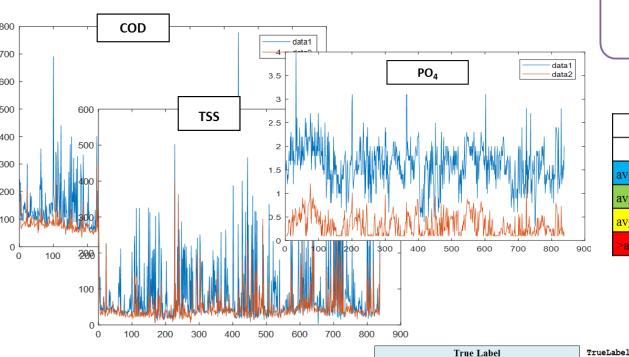
Intelligence based Waste Water Treatment Process - Control & Optimization Management

Feasibility Assessment of Al Algorithm Application to process control and optimization management of tertiary treatment :

Seine-Aval Wastewater Treatment Plant in Achères

- To improve the energy-efficiency-cost ratios for TSS Removal for dry and rainy configurations with phosporus removal control
- To optimize injection of chemical during Physico-chemical settling on the Seine Aval clarifloculation process;
- To develop Al based Application for Process Control & Optimization Management, using off-line simulations of operational scenarios with field data.

https://www.water-technology.net/projects/seine-aval/


Concept Demo-illustration

- I. Statistical off-line Effluent Data Analysis of the tertiary process Database of effluent input & output parameters
- II. AI Application (SVM; ANN) for Anomaly Detection Output Effluent Quality Control (Training & Testing)
- III. Statistical Treatment Data Analysis of expected process efficiency (i.e. TSS; COD Reduction) Vs. concentration of treatment parameters Process database
- IV. Al Application for Treatment Optimization concept demonstration of the feasibility of an Al based application for an automated process
- V. System Integration for "Beta" site testing planning & performance measures for feasibility assessment (ROI)

I-WWTP-COM with W-SMART (3/4)

Very large database : effluent input & output parameters

AI Application & Mono-parameter **Analysis for Quality Control**

Statistical tools used to establish Anomaly Severity Thresholds

Vector used

Mono-parameter Analysis		
	COD	TSS
$avg \pm 1*STD$	Non anomaly	Non anomaly
avg (± 1 *STD ± 2 *STD)	Low	Low
avg ($\pm 2^*$ STD $\pm 3^*$ STD)	Moderate	Moderate
>avg ± 3STD	Severe	Severe

PredictedLabel	Predicted Label		
		Validation Phas	se
	Date	Tested Severity	Classified Output
false	30/04/2013	4	Non anomaly
false	01/05/2013	4	Low
false	02/05/2013	4	Non anomaly
false	06/05/2013	4	Non anomaly
false	07/05/2013	4	Non anomaly
false	08/05/2013	4	Non anomaly
false	10/05/2013	4	Non anomaly
false	11/05/2013	4	Non anomaly
false	12/05/2013	4	Non anomaly
false	13/05/2013	4	Non anomaly
false	16/05/2013	4	Non anomaly

SVM Results

	Training Phase				
	Classified Output	Tested Severity	Date		
true	Severe	4	01/01/2012		
true	Severe	4	02/01/2012		
false	Low	4	03/01/2012		
false	Non anomaly	4	04/01/2012		
false	Non anomaly	4	05/01/2012		
false	Non anomaly	4	06/01/2012		
false	Non anomaly	4	07/01/2012		
false	Non anomaly	4	08/01/2012		
false	Non anomaly	4	10/01/2012		
false	Non anomaly	4	11/01/2012		
false	Non anomaly	4	12/01/2012		

I-WWTP-COM Network of Beta sites

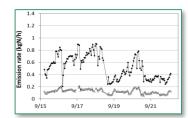
The I-WWTP-COM Network Purpose :

- Concept Demonstration & Feasibility Assessment of AI based algorithms for upgrading and automating the treatment process control to meet performance & QC requirements.
- Leveraging Experience and Resources by creating several "Beta" sites for the adaptation, demonstration and pilot testing of AI based Process Control customized to utility needs.
- Promoting a Network of Local University Centers to support AI driven Innovation for the development of the I-WWTP-COM
- Current Al Applications for
 - **Drinking Water:** Bio & Flow Anomaly Detection (SW4EU)
 - Wastewater Treatment: Process Control, Energy Efficiency (SIAAP)
 - **Reduced Energy for Sludge** AI & Monitoring (MEKOROT)

- Today, consolidate these models, generalize their use to :
 - Help in the operating decisions, for process operators ...
 - Conduct optimization studies of treatment systems and rules
 - Increased process control (residual control)
 - Limiting consumption in fluid (energy/reagents)
- Tomorrow, build complete modeling chains
 - Models of treatment chains (water/sludge)
 - Coupling models : Sewer WWTP River

Integration of models into plant supervision tools

Station SAV (Achères) Actiflo


Station SAV (Achères) Unité de nitrification / dénitrification

PC SAPHYR-Hydraulic control systems for SIAAP networks

• Capitalize the fruits of the R&D work, in operating projects.

thank you for your attention

Olivier ROUSSELOT

Director Laboratories and Environment - SIAAP